Robótica e Inteligencia Artificial
Tareas de los expertos:
1. La Robótica:
Definición:
El término robótica procede de la palabra robot. La robótica es, por lo tanto, la ciencia o rama de la ciencia que se ocupa del estudio, desarrollo y aplicaciones de los robots.
Otra definición de robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades. Básicamente, la robótica se ocupa de todo lo concerniente a los robots, lo cual incluye el control de motores, mecanismos automáticos neumáticos, sensores,sistemas de cómputos, etc.
En la robótica se aúnan para un mismo fin varias disciplinas confluyentes, pero diferentes, como la Mecánica, la Electrónica, la Automática, la Informática, etc.
El término robótica se le atribuye a Isaac Asimov.
Los tres principios o leyes de la robótica según Asimov son:
El término robótica procede de la palabra robot. La robótica es, por lo tanto, la ciencia o rama de la ciencia que se ocupa del estudio, desarrollo y aplicaciones de los robots.
Otra definición de robótica es el diseño, fabricación y utilización de máquinas automáticas programables con el fin de realizar tareas repetitivas como el ensamble de automóviles, aparatos, etc. y otras actividades. Básicamente, la robótica se ocupa de todo lo concerniente a los robots, lo cual incluye el control de motores, mecanismos automáticos neumáticos, sensores,sistemas de cómputos, etc.
En la robótica se aúnan para un mismo fin varias disciplinas confluyentes, pero diferentes, como la Mecánica, la Electrónica, la Automática, la Informática, etc.
El término robótica se le atribuye a Isaac Asimov.
Los tres principios o leyes de la robótica según Asimov son:
- Un robot no puede lastimar ni permitir que sea lastimado ningún ser humano.
- El robot debe obedecer a todas las órdenes de los humanos, excepto las que contraigan la primera ley.
- El robot debe autoprotegerse, salvo que para hacerlo entre en conflicto con la primera o segunda ley.
Robots:
Los robots son dispositivos compuestos de sensores que reciben datos de entrada y que pueden estar conectados a la computadora. Esta, al recibir la información de entrada, ordena al robot que efectúe una determinada acción. Puede ser que los propios robots dispongan de microprocesadores que reciben el input de los sensores y que estos microprocesadores ordenen al robot la ejecución de las acciones para las cuales está concebido. En este último caso, el propio robot es a su vez una computadora.
Los robots son dispositivos compuestos de sensores que reciben datos de entrada y que pueden estar conectados a la computadora. Esta, al recibir la información de entrada, ordena al robot que efectúe una determinada acción. Puede ser que los propios robots dispongan de microprocesadores que reciben el input de los sensores y que estos microprocesadores ordenen al robot la ejecución de las acciones para las cuales está concebido. En este último caso, el propio robot es a su vez una computadora.
Tipos de robots:
- Robots impulsados neumaticamente: La programación consiste en la conexión de tubos de plástico a unos manguitos de unión de la unidad de control neumático. Esta unidad está formada por dos partes: una superior y una inferior. La parte inferior es un secuenciador que proporciona presión y vacío al conjunto de manguitos de unión en una secuencia controlada por el tiempo. La parte superior es el conjunto de manguitos de unión que activan cada una de las piezas móviles del robot. Son los más simples que existen. Hay quien opina que a este tipo de máquinas no se les debería llamar robots; sin embargo, en ellas se encuentran todos los elementos básicos de un robot: estas máquinas son programables, automáticas y pueden realizar gran variedad de movimientos.
- Robots equipados con servomecanismos: El uso de servomecanismos va ligado al uso de sensores, como los potenciómetros, que informan de la posición del brazo o la pieza que se ha movido del robot, una vez éste ha ejecutado una orden transmitida. Esta posición es comparada con la que realmente debería adoptar el brazo o la pieza después de la ejecución de la orden; si no es la misma, se efectúa un movimiento más hasta llegar a la posición indicada.
- Robots punto a punto: La programación se efectúa mediante una caja de control que posee un botón de control de velocidad, mediante el cual se puede ordenar al robot la ejecución de los movimientos paso a paso. Se clasifican, por orden de ejecución, los pasos que el robot debe seguir, al mismo tiempo que se puede ir grabando en la memoria la posición de cada paso. Este será el programa que el robot ejecutará. Una vez terminada la programación, el robot inicia su trabajo según las instrucciones del programa. A este tipo de robots se les llama punto a punto, porque el camino trazado para la realización de su trabajo está definido por pocos puntos.
- Robots controlados por computadora: Se pueden controlar mediante computadora. Con ella es posible programar el robot para que mueva sus brazos en línea recta o describiendo cualquier otra figura geométrica entre puntos preestablecidos. La programación se realiza mediante una caja de control o mediante el teclado de la computadora. La computadora permite además acelerar más o menos los movimientos del robot, para facilitar la manipulación de objetos pesados.
- Robots con capacidades sensoriales:
Aún se pueden añadir a este tipo de robots capacidades sensoriales: sensores ópticos, codificadores, etc. Los que no poseen estas capacidades sólo pueden trabajar en ambientes donde los objetos que se manipulan se mantienen siempre en la misma posición. Los robots con capacidades sensoriales constituyen la última generación de este tipo de máquinas. El uso de estos robots en los ambientes industriales es muy escaso debido a su elevado costo. Estos robots se usan en cadenas de embotellado para comprobar si las botellas están llenas o si la etiqueta está bien colocada.
- Robots mosquitos: La cucaracha metálica se arrastra con gran destreza por la arena, como un verdadero insecto. A pesar de que Atila avanza a 2 km/h, tratando de no tropezar con las cosas, es «gramo por gramo el robot más complejo del mundo», según su creador, Rodney Brooks. En su estructura de 1,6 kg y 6 patas, lleva 24 motores, 10 computadores y 150 sensores, incluida una cámara de video en miniatura. La experimentación en operaciones quirúrgicas con robots abre nuevos campos tan positivos como esperanzadores. La cirugía requiere de los médicos una habilidad, precisión y decisión muy cualificadas. La asistencia de ingenios puede complementar algunas de las condiciones que el trabajo exige. En operaciones delicadísimas, como las de cerebro, el robot puede aportar mayor fiabilidad. Últimamente, se ha logrado utilizar estas máquinas para realizar el cálculo de los ángulos de incisión de los instrumentos de corte y reconocimiento en operaciones cerebrales; así mismo, su operatividad se extiende a la dirección y el manejo del trepanador quirúrgico para penetrar el cráneo y de la aguja de biopsia para tomar muestras del cerebro.
- Robot industrial: Nace de la unión de una estructura mecánica articulada y de un sistema electrónico de control en el que se integra una computadora. Esto permite la programación y control de los movimientos a efectuar por el robot y la memorización de las diversas secuencias de trabajo, por lo que le da al robot una gran flexibilidad y posibilita su adaptación a muy diversas tareas y medios de trabajo,
El robot industrial es pues un dispositivo multifuncional, es decir, apto para muy diversas aplicaciones, al contrario de la máquina automática clásica, fabricada para realizar de forma repetitiva un tipo determinado de operaciones. El robot industrial se diseña en función de diversos movimientos que debe poder ejecutar; es decir, lo que importa son sus grados de libertad, su campo de trabajo, su comportamiento estático y dinámico.
2. Inteligencia artificial:
Historia:
Es en los años 50 cuando se logra realizar un sistema que tuvo cierto éxito, se llamó el Perceptrón de Rossenblatt. Éste era un sistema visual de reconocimiento de patrones en el cual se aunaron esfuerzos para que se pudieran resolver una gama amplia de problemas, pero estas energías se diluyeron enseguida.
Fué en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS (General Problem Solver: solucionador general de problemas). Éste era una sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error.
Es en los años 50 cuando se logra realizar un sistema que tuvo cierto éxito, se llamó el Perceptrón de Rossenblatt. Éste era un sistema visual de reconocimiento de patrones en el cual se aunaron esfuerzos para que se pudieran resolver una gama amplia de problemas, pero estas energías se diluyeron enseguida.
Fué en los años 60 cuando Alan Newell y Herbert Simon, que trabajando la demostración de teoremas y el ajedrez por ordenador logran crear un programa llamado GPS (General Problem Solver: solucionador general de problemas). Éste era una sistema en el que el usuario definía un entorno en función de una serie de objetos y los operadores que se podían aplicar sobre ellos. Este programa era capaz de trabajar con las torres de Hanoi, así como con criptoaritmética y otros problemas similares, operando, claro está, con microcosmos formalizados que representaban los parámetros dentro de los cuales se podían resolver problemas. Lo que no podía hacer el GPS era resolver problemas ni del mundo real, ni médicos ni tomar decisiones importantes. El GPS manejaba reglas heurísticas (aprender a partir de sus propios descubrimientos) que la conducían hasta el destino deseado mediante el método del ensayo y el error.
En los años 70, un equipo de investigadores dirigido por Edward Feigenbaum comenzó a elaborar un proyecto para resolver problemas de la vida cotidiana o que se centrara, al menos, en problemas más concretos. Así es como nació el sistema experto.
El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU).
Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. Es en esta época cuando se desarrollan sistemas expertos más refinados, como por el ejemplo el EURISKO. Este programa perfecciona su propio cuerpo de reglas heurísticas automáticamente, por inducción.
El primer sistema experto fue el denominado Dendral, un intérprete de espectrograma de masa construido en 1967, pero el más influyente resultaría ser el Mycin de 1974. El Mycin era capaz de diagnosticar trastornos en la sangre y recetar la correspondiente medicación, todo un logro en aquella época que incluso fueron utilizados en hospitales (como el Puff, variante de Mycin de uso común en el Pacific Medical Center de San Francisco, EEUU).
Ya en los años 80, se desarrollaron lenguajes especiales para utilizar con la Inteligencia Artificial, tales como el LISP o el PROLOG. Es en esta época cuando se desarrollan sistemas expertos más refinados, como por el ejemplo el EURISKO. Este programa perfecciona su propio cuerpo de reglas heurísticas automáticamente, por inducción.
Definición de Inteligencia Artificial
La inteligencia artificial estudia como lograr que las máquinas realicen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.
Al principio se hizo hincapié en las tareas formales como juegos y demostración de teoremas, juegos como las damas y el ajedrez demostraron interés. La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning).
Se enfocaron los estudios hacia un problema muy importante denominado Comprensión del lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.
La inteligencia artificial estudia como lograr que las máquinas realicen tareas que, por el momento, son realizadas mejor por los seres humanos. La definición es efímera porque hace referencia al estado actual de la informática. No incluye áreas que potencialmente tienen un gran impacto tales como aquellos problemas que no pueden ser resueltos adecuadamente ni por los seres humanos ni por las máquinas.
Al principio se hizo hincapié en las tareas formales como juegos y demostración de teoremas, juegos como las damas y el ajedrez demostraron interés. La geometría fue otro punto de interés y se hizo un demostrador llamado: El demostrador de Galenter. Sin embargo la IA pronto se centró en problemas que aparecen a diario denominados de sentido común (commonsense reasoning).
Se enfocaron los estudios hacia un problema muy importante denominado Comprensión del lenguaje natural. No obstante el éxito que ha tenido la IA se basa en la creación de los sistemas expertos, y de hecho áreas en donde se debe tener alto conocimiento de alguna disciplina se han dominado no así las de sentido común.
Aplicaciones de la IA:
Tareas de la vida diaria:
Tareas de la vida diaria:
- Percepción
- Visión
- Habla
- Lenguaje natural
- Comprensión
- Generación
- Traducción
- Sentido común
- Control de un robot
Tareas formales:
- Juegos
- Ajedrez
- Backgammon
- Damas
- Go
- Matemáticas
- Geometría
- Lógica
- Cálculo Integral
- Demostración de las propiedades de los programas
- Ingeniería
- Diseño
- Detección de fallos
- Planificación de manufacturación
- Análisis científico
- Diagnosis médica
- Análisis financiero
Comentarios
Publicar un comentario